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Abstract. We examine the skill of a new approach to climate field reconstructions (CFRs) using an online paleoclimate data

assimilation (PDA) method. Several recent studies have foregone climate model forecasts during assimilation due to the com-

putational expense of running coupled global climate models (CGCMs), and the relatively low skill of these forecasts on longer

timescales. Here we greatly diminish the computational cost by employing an empirical forecast model (linear inverse model;

LIM), which has been shown to have comparable skill to CGCMs. We reconstruct annual-average 2m air temperature over the5

instrumental period (1850 - 2000) using proxy records from the Pages 2k Consortium phase 1 database; proxy system models

for estimating proxy observations are calibrated on GISTEMP surface temperature analyses. We compare results for LIMs

calibrated on observational (Berkeley Earth), reanalysis (20th Century Reanalysis), and CMIP5 climate model (CCSM4 and

MPI) data relative to a control offline reconstruction method. Generally, we find that the usage of LIM forecasts for online PDA

increases reconstruction agreement with the instrumental record for both spatial fields and global mean temperature (GMT).10

Specifically, the coefficient of efficiency (CE) skill metric for detrended GMT increases by an average of 57% over the offline

benchmark. LIM experiments display a common pattern of skill improvement in the spatial fields over northern hemisphere

land areas and in the high-latitude North Atlantic – Barents Sea corridor. Experiments for non-CGCM-calibrated LIMs reveal

region-specific reductions in spatial skill compared to the offline control, likely due to aspects of the LIM calibration process.

Overall, the CGCM-calibrated LIMs have the best performance when considering both spatial fields and GMT. A compari-15

son with the persistence forecast experiment suggests that improvements are associated with the dynamical evolution, and not

simply persistence of temperature anomalies.

1 Introduction

Climate field reconstructions (CFRs) aim to provide essential information on climate variability beyond the instrumental record.

These experiments take noisy and sparse proxies (e.g. tree rings, ice cores, isotope ratio measurements, etc.) and use them to20

infer a spatial estimate of relevant climate variables. A common approach to CFR uses a statistical regression model calibrated

on the instrumental record to project as far into the past as data will allow (e.g. Mann et al., 1998, 2009; Smerdon et al., 2011b,

see Smerdon et al., 2011a for a discussion and comparison of methods). This technique provides a useful estimate of past

spatial patterns (Wahl and Smerdon, 2012), but it also has inherent limitations. For example, regression-based CFRs assume

climate state to be a function of the proxy data, which can lead to an underestimation of past climate anomaly amplitudes25
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(Smerdon et al., 2011b; Wahl and Smerdon, 2012). Furthermore, because regression methods produce past spatial fields through

combinations of primary variability modes (i.e. empirical orthogonal functions; EOFs), the resulting field is not guaranteed to

be a physically consistent solution.

An alternate method of performing CFRs known as paleoclimate data assimilation (PDA) can circumvent some of the lim-

itations inherent to regression-based methods. PDA broadly characterizes a set of techniques where observational information5

from proxy data can be optimally combined with dynamical information from climate models. Recently, the ensemble Kalman

filter (EnKF) was adapted for use with time-averaged observations like those used in CFRs (Dirren and Hakim, 2005; Huntley

and Hakim, 2009). Studies using the EnKF method and idealized psuedoproxy experiments have shown that it operates well

under sparse data availability (Bhend et al., 2012), and outperforms modern statistical CFR methods (Steiger et al., 2014). More

recently, EnKF PDA was tested with real proxy data in the Last Millennium Reanalysis project (LMR; Hakim et al., 2016),10

and shows promising skill in reconstructing robust spatial fields in a computationally efficient manner. Due to the expense of

performing coupled global climate model (CGCM) simulations and relatively low forecast skill, the initial EnKF adaptation

for PDA reconstructs each time period independently using climatological data. This is known as an “offline” approach. The

EnKF method is traditionally accompanied by forward model forecasts to translate information between analysis time periods

(e.g. reanalysis products of the instrumental era). Dynamical constraints from these forecasts can increase physical consistency15

and reconstruction skill given that the model has sufficient predictability on proxy timescales (e.g. Pendergrass et al., 2012).

For CFR applications, predictability on seasonal and longer timescales is required. Ocean memory can be leveraged for iner-

annual (e.g. El Niño Southern Oscillation; ENSO) to potentially decadal predictability (Branstator et al., 2012). However, at

this timescale coupled climate models only seem to capture linearly predictable dynamics (Newman, 2013).

Online assimilation has been attempted using other PDA techniques. Crespin et al. (2009) used forecasts from an earth20

system model of intermediate complexity (EMIC) in conjunction with the ensemble selection PDA method (see Goosse et al.,

2006, 2010) to reconstruct surface temperatures, but did not investigate a comparison with an offline method. Annan and Har-

greaves (2012) performed a psuedoproxy experiment using a weighted ensemble selection method and a persistence forecast

to reconstruct surface temperatures, but found no benefit compared to their offline experiments. Matsikaris et al. (2015) took a

similar approach to Crespin et al. (2009), but used an ensemble of decadal forecasts from a coarse resolution CGCM instead of25

an EMIC. The authors found that the use of CGCM forecasts had skill, but it was not discernibly superior to the offline method.

Possible reasons for the lack of improvement include low skill for regional decadal forecasts of temperature, and issues related

to ocean initialization for each decadal interval.

These results suggest that neither the simple persistence forecast, nor a small ensemble of decadal CGCM forecasts add

valuable information to CFRs. In order to test the viability of a more traditional EnKF method we require the ability to perform30

annual forecasts for longer time spans (the past millennium) and in large ensembles (~100 members). These requirements rule

out the use of a CGCM. Instead, we explore a simple, empirically-based forecast from a linear inverse model (LIM; Penland

and Sardeshmukh, 1995). The forecast skill of LIMs is such that they are currently used for operational ENSO forecasts

(Newman et al., 2009). Moreover, recent studies found LIM skill to be comparable to the skill of CGCMs when performing

annual-to-decadal hindcast experiments over the instrumental era (Newman, 2013; Huddart et al., 2016).35

2

Clim. Past Discuss., doi:10.5194/cp-2016-129, 2016
Manuscript under review for journal Clim. Past
Published: 6 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



In this work, we propose a computationally efficient “online” data assimilation approach for use in paleoclimate field re-

constructions. The primary goal is to investigate whether the addition of dynamical constraints with a forecast can increase

reconstruction skill relative to the offline EnKF method. We perform a series of reconstruction experiments using annual

forecasts from a cost-efficient LIM. Global average and spatial results of the online reconstructions are compared to both a

persistence forecast method and the offline method of Hakim et al. (2016). In Sect. 2 we discuss the basics of the EnKF method5

and define the use of LIM forecasts in reconstruction experiments. Section 3 details the datasets used and the general exper-

imental configuration. Section 4 discusses and compares results between the online and offline reconstructions, followed by

conclusions in Sect. 5.

2 Online PDA

The Last Millennium Reanalysis (LMR) framework (Hakim et al., 2016) provides a setting to run many computationally10

efficient realizations of an offline climate reconstruction. Here we begin with it as the basis for our implementation and inves-

tigation of online PDA. Central to the LMR framework is the use of the ensemble Kalman filter (EnKF; Kalnay, 2003). The

EnKF update equation (Eq. 1) describes the calculation of a posterior (analysis) state vector xa through the optimal update to

a prior (background) state vector xb using proxy information,

xa = xb + K[y−H(xb)]. (1)15

The innovation, [y−H(xb)], characterizes new information content as a difference between proxy observations in vector y and

observations estimated from the prior by H(xb) (hereafter denoted as ye). H() is a potentially non-linear operator that maps

the prior state into observation space. The Kalman gain matrix K, defined by Eq. (2), spreads information into the analysis

weighted by prior covariance and the observational error covariance matrix R

K = cov (xb,ye)[cov (ye,ye) + R]−1 (2)20

where cov (a,b) represents a covariance expectation. The LMR framework uses a variant of the EnKF update, known as an

ensemble square root filter (EnSRF; Whitaker and Hamill (2002)). This process updates the ensemble mean and perturbations

from the mean separately allowing for the serial assimilation of proxy data, and simplification of the update calculations.

Typical implementations of the EnKF method include a forward model forecast between analysis times. As stated earlier,

the computational expense and low skill of CGCM forecasts prompted the use of the offline method where each year is25

reconstructed independently without forecasting. Here, instead of using static prior (xb) at the beginning of each reconstruction

year, the current year’s posterior analysis is forecast forward by one year with a LIM defined by

xf
b = G1xa. (3)
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The term G1 is a mapping term calculated from the calibration of a LIM that maps the current state to a forecasted state 1-year

later. Details of the EnKF reconstruction algorithm can be found in Appendix A. The formulation of the LIM used here is

described in the following section.

2.1 Linear inverse model formulation

The linear inverse model (LIM; e.g. Penland and Sardeshmukh, 1995) used in this study closely follows the implementation5

described in Newman (2013). The basic equation describes a linearized dynamical system

dx
dt

= Lx + ξ (4)

as the tendency of an anomaly state vector x, given by a linear dynamical operator L, which is linearized about a mean state,

plus random white noise, ξ. The dynamical operator L is assumed to be constant in time. After integrating (Eq. 4) in time, the

solution is a mapping of x at time t (in years) to a state at time t + 110

x(t + 1) = G1x(t) +σ(t) (5)

where G1 is equivalent to eL. As in Newman (2013), we choose to empirically estimate G1 rather than L due to sampling

deficiencies of a few highly damped eigenmodes of L on an annual timescale. See Appendix B for a summary of the G1

calculation.

While the simplicity of a LIM makes it well suited for the current application, it also has issues to be considered. First,15

LIM forecasts are performed in EOF space based on patterns derived from the calibration data. As such, the LIM makes an

assumption of stationarity for the EOFs and encoded dynamics over the entire reconstruction time period. Furthermore, the

process of converting data into EOF space truncates spatial anomaly information and reduces ensemble variance. The next

section discusses how we handle variance reductions when using a LIM in the LMR framework.

2.2 Ensemble calibration20

In any ensemble forecast setting, a basic assumption is made that the sample of ensemble members gives a good approximation

to the statistics of the full system (Murphy, 1988). Sampling error often results in too-small variance, which can cause “filter

divergence” where observational information is underweighted relative to the forecast prior and the ensemble variance collapses

toward zero. The online PDA technique presented here is especially vulnerable to filter divergence because all eigenmodes of

G1 are damped (negative real eigenvalues). Moreover, the conversion of the analysis (xa) into EOF space at each timestep25

removes any spatial information that does not project upon the retained modes of a given LIM. Consequently, LIM forecasts

lose ensemble variance in time.

There are a variety of well-tested methods available to address information loss in the forecast ensemble. Here we use an

adaptation of the hybrid ensemble Kalman filter–3D variational scheme (Hamill and Snyder, 2000) to prevent filter divergence
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and to facilitate comparison with the offline PDA technique. This technique handles the loss of ensemble variance in the

forecast ensemble (xf
b) by blending it with a static source (xs

b), which is the same climatological prior that would be used

independently for each year in the offline method. As a result, the update equations use a blended prior state x̂f
b (Eq. 6) and a

blended Kalman gain term K̂ (Eq. 7):

x̂f
b = axf

b + (1− a)xs
b (6)5

K̂ =
(a)cov (x̂f

b, ŷf
e) + (1− a)cov (xs

b,ys
e)

(a)cov (ŷf
e, ŷf

e) + (1− a)cov (ys
e,ys

e) + R
. (7)

Appendix A provides details on how this is incorporated into the reconstruction algorithm.

In these hybrid DA equations, the parameter a controls the relative weighting between static and forecast information

sources. When a = 0.0, reconstructions are identical to the offline case wherein the prior x̂f
b is reset to the static prior for

every year with no blending. For the opposite case, a = 1.0, only forecast information is used with no contribution from static10

information.

3 Data and experimental configuration

The relative forecast skill of a LIM is dependent on the data used to empirically derive the mapping term G1. For this reason,

we explore LIMs calibrated on four different data sets. CGCM calibration data are used from two last-millennium climate

simulations in the Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012): the Community Climate15

System Model v4 (CCSM4; Landrum et al., 2013) and the Max Planck Insitute Earth System Model paleo-mode (MPI). These

simulations cover a 1000 year pre-industrial (850–1850 C.E.) time period including volcanic forcing events (aerosols and

greenhouse gases), solar variability, and human-related land cover changes. The 20th Century Reanalysis (20CR; Compo et al.,

2011), a DA synthesis of observations and a weather forecast model, provides over 150 years of reanalysis data spanning the

instrumental record (1850–2012). Finally, we use the Berekely Earth surface temperature dataset (BE; Rohde et al., 2013) as an20

observational calibration. BE provides a 60-year sample with nearly complete global coverage. The different LIM calibration

datasets used here span linear modes of predictability derived from model space to that of observations.

The basic configuration we use for all experiments, including the offline control, involves a choice of data to sample as

the prior, an instrumental data source to calibrate proxy observation models, and a proxy record dataset. For the prior, we

use annually-averaged 2m air temperature anomalies from the CCSM4 last-millennium simulation. The linear observation25

models for proxy data are calibrated against the NASA Goddard Institute for Space Studies surface temperature analysis

dataset (GISTEMP; Hansen et al., 2010). All experiments use annually-resolved proxy records from the PAGES 2k Consortium

(2013) database. These proxies have been ascertained to covary regionally with temperature and include: tree rings, ice cores,

corals, sediment cores, and speleothems. Only proxies with a minimum of 10 years overlapping with the observation model

calibration data, and a minimum calibration-fit correlation of 0.2 are used. It should be noted that the correlation threshold is30

not strictly necessary, but Hakim et al. (2016) found that this threshold did not quantitatively affect the reconstruction results.
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Here, the reduction in proxies to those with more information helps reduce computational costs, allowing a larger number of

reconstruction experiments.

We reconstruct annual-mean 2m air temperature anomalies for the period of 1850–2000 C.E. as in Hakim et al. (2016). Using

the four LIM calibrations, we search the parameter space of 0≤ a≤ 1 for an optimal weighting between static and forecast

information sources in our hybrid PDA framework. Additionally, we perform a persistence experiment for comparison against5

LIM-based performance where the posterior for year n is used as the prior for year n+1. The persistence forecast uses the same

hybrid PDA blending scheme as the LIM forecast experiments to mitigate the effects of reductions in ensemble variance from

the assimilation process. We account for the sensitivity to the proxy data used in a CFR through random resampling of available

proxy data and the static prior ensemble. In a single realization a random sample of 75% of the usable proxy records, and a

100 member sample of anomaly states from the prior source, are selected. A total of 100 realizations are performed for each10

LIM calibration and blending coefficient. In order to make the realizations consistent between the experiments using different

blending coefficients, we ensure the same sequences of random samples are taken by seeding the random number generator for

each a-value. In total, this gives 104 reconstructions of the climate state for each experiment. These reconstructions are then

averaged to give the final analysis.

3.1 Skill metrics15

The primary skill metrics are correlation and the coefficient of efficiency (CE; Eq. 8,9; Nash and Sutcliffe, 1970). Correlation

gives an overall sense of signal timing (phase), while CE is a stricter metric that is sensitive to signal timing, amplitude, and

bias. Using these metrics, we compare the reconstructed ensemble-mean1 values x against GISTEMP verification values v . The

value τ represents the number of verification times available (in this case representing the period of 1880 - 2000), an overbar

(e.g. v̄) denotes a temporal average, while σx and σv are the standard deviations of the respective time series. Skill scores are20

compared for the reconstructed global mean temperature (GMT) and spatial grid points.

corr =
1
τ

τ∑

t=1

(xt − x̄)(vt − v̄ )
σxσv

(8)

CE = 1 −
∑τ

t=1(vt − xt )2
∑τ

t=1(vt − v̄ )2 (9)

We also use the continuous ranked probability score (CRPS; Gneiting and Raftery, 2007) as a comparison against CE skill

metrics.25

CRPS =
τ∑

t=1


 1

K

K∑

i

∣∣∣x (i)
t − vt

∣∣∣− 1
2K 2

K∑

i

K∑

j

∣∣∣x (i)
t − x (j)

t

∣∣∣


 (10)

The CRPS is considered to be a ‘proper’ scoring technique which prevents manipulations of the data from overestimating the

reconstruction skill; the measure reflects the mean absolute error and narrowness of the ensemble distribution. We use the
1Ensemble mean represents the average taken over all ensemble members and all realizations.

6

Clim. Past Discuss., doi:10.5194/cp-2016-129, 2016
Manuscript under review for journal Clim. Past
Published: 6 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



CRPS as defined in Tipton et al. (2016) to calculate the CRPS of the reconstructed GMT for each realization (Eq. 10) where

x (i)
t denotes a single member of a K -member ensemble. We take the score as the average CRPS over all realizations and use

a Kolmogorov-Smirnov test on the resulting distribution to determine whether it is significantly different than the offline case

with 95% confidence.

4 Results and discussion5

4.1 Verification of global mean temperature

Figure 1 displays global mean 2m air temperature (GMT) results verified against GISTEMP for all tested values of the blending

parameter a. Every case except for the persistence forecast method yield CE values greater than the offline case. Correlations

are higher than the offline benchmark for all experiments, including the persistence forecast. Best skill is achieved between

the a-values of 0.7 to 0.9 with a steep drop in verification skill as a approaches unity (a pure LIM forecast). The CCSM4 and10

20CR LIM display the best overall CE performance with a 9% improvement over the offline method. These two experiments

also display a 2% increase in correlation and have slightly smaller correlation than the persistence forecast experiment (Table

1). Correlations for the 20CR, CCSM4, and MPI experiments are significantly different (with 95% confidence) than the offline

reference based on bootstrap results for skill metric error bounds. The CE changes for all LIM experiments are also significant.

CRPS values for the GMT results (Fig. 2) are generally consistent with those for the CE skill metric.2 Specifically, GMT15

verification with CRPS shows that all LIM forecasting experiments outperform the offline method, with the CCSM4 and 20CR

LIMs having the best performace (18% better than the offline case). All LIM experiments’ best CRPS scores are significantly

better than the offline case with 95% confidence. There are slight differences in results for the MPI and BE LIM cases when

comparing CE and CRPS: the blending coefficient achieving the best score shifts to the next highest a-value in both cases, and

the BE LIM outperforms the MPI LIM when considering CRPS (Table 1).20

Both the CE and CRPS measures for different blending coefficients are affected by the degree of fit to the warming trend in

the GISTEMP reference. The trends for all experiments are shown in Fig. 3. The trend of the offline case (a = 0) is 0.62 K/100

yrs, about 0.07 K/100 yrs above the GISTEMP trend. However, for the MPI and CCSM4 LIM experiments, as well as the

persistence forecast experiment, the reconstructed trend increases as the blending parameter a increases. This increase in trend

away from the GISTEMP trend for the MPI and CCSM4 experiments is reflected in the lowered CE (Fig. 1) and CRPS (Fig. 2)25

for the a-values from approximately 0.0 to 0.6. The reconstructed trend from the two CGCM-based LIM experiments begins

to decrease around a = 0.6 where CE also shows a significant increase towards maximum values. The persistence forecast

trend has the largest disagreement, increasing to approximately 0.72 K/100 yrs for a = 0.9, which results in the CE and CRPS

never surpassing the offline benchmark in this case. The 20CR LIM only increases the reconstructed trend slightly over the

GISTEMP trend for middle a-values. The BE experiment has a decreasing trend for increasing a, and drops to a very low trend30

of 0.38 K/100 yrs when a = 0.9. Interestingly, though the trends for the MPI, CCSM4, and 20CR experiments are below that

2Note that best results for CRPS occur at minimum values instead of the maximum.
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of the GISTEMP trend for a = 0.95, their skill still outperforms the offline case in all three metrics. Despite the mismatch in

the overall trend, these online forecasting methods still produce better matches of phase and amplitude of GMT variability for

the reconstructed anomalies compared to the offline case.

The trend results also illustrate the relative amount of proxy data utilization between these different experiments. Given

that every experiment uses the same prescribed list of seeds to generate proxy record samples, the differences in reconstructed5

trend can only arise from differences in weighting of the proxies or the LIM forecasts. Since LIMs are calibrated on detrended

data and their forecast modes are damped, the forecast contribution to long-term trends is likely small; these trends are instead

governed by utilization of proxy information. For the EnKF PDA method, the weighting of information is controlled by the prior

ensemble variance and proxy error variance. The proxy error variance is fixed for all experiments we perform, so the changes

in the reconstructed trend are a result of how the LIM forecasts affect the ensemble variance. In all forecast experiments,10

skill and the reconstructed trends drop off severely as a approaches 1.0. When using only forecast information (a = 1.0), the

ensemble variance collapses due to the damped properties of the LIMs, which results in filter divergence. The BE LIM case

reaches its maximum CRPS and CE values at smaller a and also has the lowest reconstructed trends of the LIM experiments.

This suggests the BE forecast produces less ensemble variance than the other LIMs, possibly due to forecast mode damping

or poor projection of the posterior analysis into the LIM EOF space. The eigenvalues of the BE LIM’s leading two forecast15

modes have e-folding times of 5.4 and 1.5 years, respectively. This is in the same range of the leading forecast modes of

the CGCM-calibrated LIMs (e.g. 3.7 and 1.2 year e-folding times for the MPI LIM). Consequently, a poor projection of the

analysis ensemble onto the forecast modes of the BE LIM is likely the cause of the reduced ensemble variance. The persistence

forecast displays an interesting disparity between the skill metrics; overall, it performs the best in correlation, but the worst

in CE and CRPS. Having the largest reconstructed trend suggests that the persistence case has the highest weighting of proxy20

data. With a persistence forecast there is no damping of reconstructed spatial anomalies or truncation of the ensemble variance

from projection into EOF space. The resulting higher proxy weighting may explain why the persistence case correlation is

better than the other forecasting methods. The linear observation models used to estimate observations in each case are based

on a calibration against GISTEMP. Proxies that have a better calibration fit (higher correlation) with GISTEMP have less error

variance, and therefore, have more influence on the posterior analysis. The persistence case allows more information from the25

influential (well-correlated) proxies into the analysis because the ensemble variance is larger. However, from the CE and CRPS

values, which are sensitive to more than just signal phase matching, it is clear the general trend mismatch degrades the quality

of the persistence forecast reconstruction compared to the offline benchmark.

Removing the linear trend from each case allows for an examination of how well the reconstructions capture variability

not associated with the warming trend (i.e. interannual and decadal variability; evident in Fig. 4). Generally, the performance30

increases for the detrended data over the offline case are much larger than for the full time series. Compared to verification

with the full time series, the correlation of the detrended offline case drops from 0.9 to 0.67, and the CE drops from 0.77 to

0.29 (Table 2). With respect to CE, all experiments (including the persistence method) improve upon the offline benchmark.

The 20CR LIM achieves the best improvement over the offline case (72% increase), while the persistence case shows the

least improvement (35% increase). Except in the BE LIM experiment, detrended correlation metrics again increase slightly35
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over the offline case. The BE LIM hovers around the benchmark correlation for 0.0< a< 0.7 and then drops below it. A CE

improvement with no change in correlation implies that the BE LIM improves the detrended anomaly amplitudes and bias, but

does not improve the signal timing compared to the offline case.

The CE and correlation skill metrics of the offline experiment both decrease when calculated on the detrended GMT. In

contrast, the CRPS improves by 7% (minimizing from 12.5 to 11.6). CRPS rewards reduction in mean absolute error, and5

‘narrowness’ of the forecast ensemble, whereas CE and correlation depend more on variance properties of the reconstructed

time series. In removing the linear warming trend, we remove a large degree of the time series’ variance and subsequently lose

the associated skill in CE and correlation. In the case of CRPS, the linear trend is only a source of mean error when it does

not closely match the reference trend. Since we remove the trend, while not affecting the ensemble spread, the mean errors

decrease and the CRPS metric improves. Figure 5 shows CRPS for all blending coefficients with detrended data. The behavior10

is quite similar to the full GMT CRPS, but as the detrended CE reflects, even the persistence forecast shows improvement

over the offline method. An aspect that stands out with detrended CRPS is that the persistence forecast achieves the best value

when a = 1.0. A cursory examination of the detrended GMT timeseries of the persistence case compared to the detrended

GISTEMP GMT timeseries (not shown) reveals that it captures decadal variability over the instrumental record, but virtually

none of the interannual variability; i.e., the a = 1.0 persistence reconstruction gives a smoothed representation of the GMT.15

This again highlights a difference between the two metrics of CE and CRPS. The CRPS metric, which generalizes to the mean

absolute error of the ensemble summed over time, does not penalize the smoothed GMT signal approximately bisecting the

interannual signal for a = 1.0. The CE metric, which sums the squared errors of the ensemble mean and then normalizes by the

climatological variance, does penalize this behavior.

4.2 Verification of spatial fields20

Here we examine the skill of the spatial fields against the offline case using correlation and CE; CRPS is omitted because

the full spatial field ensembles are too large to store. The offline case shows positive skill over most of the globe except in

the Southern Hemisphere oceans and in the high-latitude North Atlantic to Barents Sea corridor (Fig. 6). All LIM-forecasting

cases show improvements to CE, most notably in the same North Atlantic to Barents Sea area, and across northern Europe into

Asia; there are also smaller skill increases across western North America. The CCSM4, MPI, and BE LIMs generally show25

large CE increases in the high-latitude southern ocean. In contrast, the reconstruction with the 20CR LIM does not improve

the southern ocean at all and has large deficiencies over many ocean areas. The persistence case generally shows decreases

in CE across large areas of the globe. Of the global mean CE for each grid, the CCSM4 LIM gives the best performance,

increasing the global mean CE by 0.09, followed by the MPI LIM with an improvement of 0.06. The 20CR and persistence

cases show decreases in average spatial skill across the grid, with the 20CR being worst with a global mean CE change of30

−0.18. The BE LIM, while showing improvements over North Hemisphere land areas, has compensating decreases in ocean

skill that make the global mean CE nearly equivalent to the offline case. All global mean CE values, except in the BE LIM

case, are significantly different (at 95% confidence) from the offline case when comparing grid point skill distributions using a

Student’s t-test. Changes in spatial correlation (not shown) are generally small in regions where the CE increased suggesting
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that improvements are not related to signal phasing; however, some of the large decreases in CE for the 20CR, BE, and

persistence experiments do coincide with areas of correlation decreases.

In the spatial results, there is a clear distinction between LIMs calibrated on data from the shorter instrumental era, and the

millennium-scale climate simulation data. Compared to the offline spatial skill, large areas of skill degradation are apparent for

both the 20CR and BE LIM reconstructions. It is surprising that the 20CR LIM has the worst spatial skill given that it has the5

best GMT timeseries CE skill. The leading EOF for each LIM calibration reveals a difference in spatial structure that forms

part of the forecast basis (Fig. 7). The leading EOF of the 20CR experiment lacks the ENSO/PDO-like pattern of the other

LIMs and instead focuses on variability structures rooted in the southern ocean where relatively fewer pressure observations

are available for assimilation; many of the large decreases in CE are in these same regions. The BE LIM displays a leading

mode more similar to the CGCM-based LIMs, but still has skill problems over large ocean areas. One reason the skill of10

the instrumental era LIMs may be different is that they are based on shorter records that coincide with variability related to

anthropogenic forcing. Separating the global warming trend from the LIM by means of linear detrending is bound to leave

residual signals that affect LIM forecast modes. A LIM based on a shorter record may not have enough of a sample to properly

characterize representative modes of variability over a longer time span. While the BE LIM is based on only 60 years of data,

it produces much less spatial skill degradation than the 150 years of 20CR data. This suggests there may be inconsistencies in15

variability caused by observational coverage and the data assimilation method used in creating the 20CR dataset.

5 Conclusions

We have outlined and tested a new method for performing online paleoclimate data assimilation (PDA) for climate field recon-

structions (CFRs) using linear inverse models (LIMs). We tested four different LIMs empirically derived from surface temper-

ature data from the following data sets: Berkeley Earth (BE), the 20th Century Reanalysis (20CR), and two last-millennium20

climate simulations (CCSM4 and MPI) from the Coupled Model Intercomparison Project phase 5 (CMIP5). We also performed

a persistence forecast experiment for comparison. In general, we find that LIM-enabled online assimilation improves upon the

offline results for both the global average and spatial field of 2m air temperature.

With respect to GMT verification, LIM experiments show large improvements for skill metrics calculated on the detrended

GMT. The coefficient of efficiency (CE) values show an average increase around 57%, while correlations increase around 4%.25

The continuous ranked probability score (CRPS) metrics increase by an average of 15% across all LIM experiments. Skill

metrics tend to maximize for blending coefficients with a higher weighting of flow-dependent forecast information (0.7< a<

0.95). Spatial skill reveals that the addition of LIM forecasting provides spatial information in regions where the offline method

performs poorly— including North Hemisphere land areas, and the North Atlantic to Barents Sea corridor. The two LIMs

calibrated on instrumental era data (20CR and BE) display large regions over the ocean where the skill degrades compared to30

the offline case. Even with the large areas of improvement, the 20CR LIM decreases the area-weighted average CE (−0.18),

and the BE LIM area-weighted average breaks even. In contrast, the two CGCM-based LIM experiments show area-weighted

average CE increases of 0.09 (CCSM4) and 0.06 (MPI), respectively. When considering both GMT and spatial skill results,
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the CGCM-based LIMs have the best overall performance with the CCSM4 LIM slightly outperforming the MPI LIM. The

persistence forecast fails to improve the more stringent GMT skill metrics (CE and CRPS) as well as general spatial skill, but

does well in GMT timeseries correlation. Subsequently, this suggests that the improvements of online reconstructions when

using a LIM are due to forecast information and not simply the addition of temporal persistence.

Though we are reconstructing instrumental era surface temperatures, it is an interesting result that CGCM-calibrated LIMs5

based on last millennium (850-1850) simulations have the best overall performance. This could mean that having long-running

samples of variability that do not contend with major sources of variability related to anthropogenic forcing are beneficial for

reconstruction purposes. The LIMs used in these experiments were all calibrated on data with the least-squares linear fit trend

removed. In order for LIMs based on observational data sources to achieve similar results, it may be necessary to employ a

more sophisticated method of filtering out the global warming signal. However, one benefit of using CGCM-based LIMs is that10

it enables forecasts for a much larger set of climate-related quantities than are available from observations alone.

In this work, we have shown that we can improve both GMT and spatial field skill over the offline EnKF PDA method

through the inclusion of a simple forecast model. A previous comparison of offline and online PDA using a CGCM as a

forecast model found no discernible difference in reconstruction skill (Matsikaris et al., 2015), and earlier studies of the EnKF

PDA method forewent the usage of forward models citing insufficient model skill to justify the expense (Bhend et al., 2012;15

Steiger et al., 2014). Our results show that an online method can increase reconstruction fidelity, and more importantly that it

can be done using an empirical forecasting method that is nearly as computationally efficient as the offline approach. As such,

this method provides a useful foundation for further investigation of incorporating dynamical constraints of a forecast model

into climate field reconstructions.

Appendix A: Online assimilation algorithm20

This section details the data assimilation equations used to perform paleoclimate field reconstructions, and the algorithm steps

for a single realization of an online climate reconstruction.

A1 Ensemble square root filter (EnSRF)

The EnSRF approach (Whitaker and Hamill, 2002) uses an ensemble sampling approach to solve the Kalman filter equations

by separating the ensemble mean (z̄b) and ensemble perturbations about that mean (z′b = zb − z̄b). Note that zb represents an25

augmented state vector, zb =


xb

ye


, combining the prior state (xb) and the estimated observations (ye). The EnSRF method

allows for the serial assimilation of proxy observations using the equations

z̄a = z̄b + K[yi − ȳei ] (A1)

z′a = z′b + K̃y′ei (A2)
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for each proxy i = 1, ...,p. The mean state z̄b is an m× 1 column vector, the ensemble perturbations z′b is an m× n matrix, the

mean estimated observation for proxy i , ȳei , is a scalar value, and perturbations about the mean estimated observation y′ei is a

1× n row vector. Note that when observations are serially assimilated, the Kalman gain (Eq. 2) is simplified to

K =
cov (z′b,y′ei )
var (y′ei ) +σ2

i
(A3)

where σ2
i is the observational error for proxy yi and the denominator is now a scalar value . The perturbation update equation5

K̃ is given by

K̃ =

[
1 +

√
σ2

i

var (y′ei ) +σ2
i

]−1

K (A4)

Finally, to adapt the hybrid assimilation scheme into the EnSRF method, we incorporate the data source blending as shown

in Eq. (7). At this point, the blended state (ẑf
b) contains both flow dependent and static (climatological) information. After

incorporation, the Kalman gain (Eq. A3) becomes10

K̂ =
(a)cov (ẑf ′

b , ŷf ′
ei ) + (1− a)cov (zs′

b ,ys′
ei )

(a)var (ŷf ′
ei ) + (1− a)var (ys′

ei ) +σ2
i

, (A5)

the perturbation Kalman gain (Eq. A4) becomes

˜̂K =

[
1 +

√
σ2

i

(a)var (ŷf ′
ei ) + (1− a)ys′

ei +σ2
i

]−1

K, (A6)

and the mean and perturbation updates from Eq. (A1) and Eq. (A2) become

z̄a = ¯̂zf
b + K̂[yi − ¯̂yf

ei ] (A7)15

z′a = ẑf ′
b + ˜̂Kŷf ′

ei . (A8)

A2 Assimilation algorithm

1. Choose a static ensemble prior (xs
b) of n members, and group of p proxies (y) to assimilate.

2. Calibrate observation models for each proxy record by applying a univariate linear fit against co-located instrumental

data.20

3. Create an estimated observation ensemble (ys
e) for each proxy record using their corresponding observation model and

augment the prior ensemble to form the static state ensemble, zs
b =


xs

b

ys
e


. This an (m + p)× n state vector that will be

updated during assimilation.
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4. For each reconstruction year:

(a) If not the first reconstruction year, then reset zs
b back to the original static prior and form a blended prior (ẑf

b) using

Eq. (6).

(b) For each proxy yi from y = [y1,y2, ...,yp]:

i. If the current proxy has no observations for the current year, then skip to the next proxy5

ii. Else, select the matching estimated observations (ŷf
ei , ys

ei ) corresponding to the current proxy yi from the

augmented states (ẑf
b, zs

b).

iii. Calculate the mean and perturbation of the estimated observations and augmented state vectors for use in the

serial ensemble square root filter method.

iv. Use the perturbations of ẑf
b, zs

b, ŷf
ei , ys

ei to form a blended Kalman gain terms as shown in Eq. (A5) and Eq.10

(A6).

v. Update the mean and perturbations of ẑf
b and zs

b by using the blended gain matrices from the previous step in

Eq. (A7) and Eq. (A8).

vi. Reassemble za and zs
a by adding the ensemble mean back into the perturbations. These will be used for the

next proxy assimilated as ẑf
b and zs

b.15

(c) After all proxies have been assimilated, extract the climate field xa from the augmented analysis state za.

(d) Perform a LIM forecast on xa using Eq. (3) resulting in xf
b.

(e) Recalculate the estimated observations yf
e from xf

b and augment the state to form zf
b.

5. After all years complete, we have our reconstruction of climate states xa from all years.

Appendix B: LIM calibration20

The following steps are performed to empirically derive a LIM from a given data source. The steps detail how we find the

mapping term G1 shown in Eq. (5).

1. If the calibration data contains seasonal signals, then they are removed by smoothing data with a 1-year running mean.

2. The data is converted into anomaly format by removing the climatolical mean for each individual month.

3. The resulting anomaly is detrended. This removes a large degree of the skill found by Newman (2013) when using25

instrumental data, but we are focused on forecasting modes of interannual variability, not the secular warming trend.

4. The detrended anomaly data is projected into EOF space where the leading 8 modes of variability are retained. The

number of modes retained here covers those with e-folding times (decorrelation time scales) of 1-year or more based on

analysis of G1 (as calulated in the following step).
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5. Finally, we determine G1 based on the lag-covariance statistics of the calibration data. The equation C(1) = G1C(0) is

solved for G1 where C(n) =
〈
x(t + n)x(t)T

〉
.
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Figure 1. Comparison of global mean 2m air temperature coefficient of efficiency (CE; left) and correlation (right) metrics for different

blending coefficients. The colored lines represent the different LIM calibration experiments using data from the Community Climate System

Model v4 (CCSM4), NOAA 20th Century Reanalysis v2 (20CR), Max Plank Institute Earth System Model (MPI), Berkeley Earth Surface

Temperatures (BE); or the persistence forecast case (Persist). The offline benchmark is depicted as the horizontal dashed black line.
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Figure 2. Comparison of global mean 2m air temperature continuous ranked probability score (CRPS) for different blending coefficients.

The colored lines represent the different forecasting experiments, while the offline benchmark is depicted as the horizontal dashed black line.

Starred points indicate a statistically significant (95% confidence) difference between the offline benchmark and online experiment.
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Figure 3. Calculated trends from a least squares fit against the reconstructed global mean 2m air temperature (1880 - 2000). Colored lines

depict the calculated trends for each LIM experiment across a range of blending coefficients, while the black lines represent the benchmark

trends calculated from the offline reconstruction (dashed) and GISTEMP data (solid).
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Figure 4. Same as in Figure 1 but with the linear trend removed from the global mean 2m air temperature data before calculation of skill

metrics.
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Figure 5. Comparison of detrended global mean 2m air temperature continuous ranked probability score (CRPS) for different blending

coefficients. The colored lines represent the different forecasting experiments, while the offline benchmark is depicted as the horizontal

dashed black line. Starred points indicate statistical significance (95% confidence) between the offline benchmark and online experiment.
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Offline Mean: 0.11 20CR - Offline   Mean Diff: -0.18

CCSM4 - Offline   Mean Diff: +0.09 MPI - Offline   Mean Diff: +0.06
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Figure 6. Spatial maps displaying the difference in coefficient of efficiency (CE) from the offline case. Difference maps are displayed for

each forecasting experiment using the blending coefficient that achieves the highest full GMT CE skill except for the persistence case where

a = 0.9 was used. (See Table 1 for the list of corresponding blending coefficients.) The reference CE of the offline case is shown in the upper

left, and uses the same color scale as the difference maps. Area-weighted global average differences are given in the title of each panel. All

global mean differences except in the BE LIM case are significantly different than the offline benchmark with 95% confidence.
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Figure 7. Leading empirical orthogonal function (EOF) from the basis for each LIM calibration. The total fraction of the variance explained

is given in the title of each panel. All EOFs have been multiplied by their corresponding singular value.
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Table 1. Best value of the coefficient of efficiency (CE), correlation (r), and continuous ranked probability score (CRPS) verification metrics

for global mean 2m air temperature. For each experiment, best values are given with the corresponding blending coefficients (a) that achieved

it and the percentage change compared to the offline case. A (*) indicates which experiment achieved the best performance in a given metric.

Offline verification metrics are given for reference.

Full GMT Max CE %∆CE CE a-value Max r %∆r r a-value Min CRPS %∆CRPS CRPS a-value

Offline 0.77 0.90 12.5

Persist 0.77 0 0.0 *0.93 3 0.9 12.5 0 0.0

BE 0.82 7 0.7 0.91 1 0.8 10.7 -14 0.8

CCSM4 *0.84 9 0.9 0.92 2 0.8 *10.2 -18 0.9

20CR *0.84 9 0.9 0.92 2 0.9 *10.2 -18 0.9

MPI 0.83 8 0.9 0.91 1 0.8 10.8 -14 0.95
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Table 2. Best value of the CE, correlation, and CRPS verification metrics for detrended global mean 2m air temperature. For each experiment,

best values are given with the corresponding blending coefficients (a) that achieved it and the percentage change compared to the offline

case. A (*) indicates which experiment achieved the best performance in a given metric. Offline verification metrics are given for reference.

Detrended GMT Max CE %∆CE CE a-value Max r %∆r r a-value Min CRPS %∆CRPS CRPS a-value

Offline 0.29 0.67 11.6

Persist 0.39 35 0.9 *0.74 11 0.9 10.1 -13 1.0

BE 0.43 48 0.8 0.67 0 0.1 10.0 -14 0.9

CCSM4 0.46 59 0.9 0.70 5 0.7 9.8 -16 0.9

20CR *0.50 72 0.9 0.71 6 0.9 *9.6 -17 0.9

MPI 0.43 48 0.9 0.69 3 0.7 10.1 -13 0.95
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